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Abstract
Linear classifiers are a basic model in supervised learning. We study the problem of learning a
mixture of linear classifiers over Gaussian marginals. Despite significant interest in this problem, in-
cluding in the context of neural networks, basic questions like efficient learnability and identifiability
of the model remained open.

In this paper, we design algorithms for recovering the parameters of the mixture of k linear
classifiers. We obtain two algorithms which both have polynomial dependence on the ambient
dimension n, and incur an exponential dependence either on the number of the components k or a
natural separation parameter ∆ > 0. These algorithmic results in particular settle the identifiability
question under provably minimal assumptions.
Keywords: mixture models, linear classifier, method of moments

1. Introduction

Mixture models are a standard way to model data coming from a heterogeneous population. In
particular, the population is assumed to consist of k subgroups (assumed to be homogeneous) and
the data in each subgroup follows a parametric model. Given data from the overall population, the
usual task is to recover the parameters of each of the components as well as their relative proportion
in the population.

A variety of mixture models ranging from Gaussian mixture models and mixtures of product
distributions over continuous domains, to mixtures of ranking models, mixtures of subcubes over
discrete domains are used to capture data in different domains. There is an extensive literature in
statistics and computer science that gives efficient polynomial time algorithms for learning many
mixture models (Feldman et al., 2006; Kalai et al., 2010; Moitra and Valiant, 2010; Belkin and Sinha,
2010; Rabani et al., 2014; Li et al., 2015; Awasthi et al., 2010; Liu and Moitra, 2018; Chen and
Moitra, 2019; Chen et al., 2020).

The thrust of the study of mixture models, including nearly all the works cited above, has been in
the unsupervised setting – i.e., where the data is unlabeled. However, another line of work, which has
gained traction in recent years focuses on the supervised setting – i.e., the data is labeled (Viele and
Tong, 2002; Chaganty and Liang, 2013; Sun et al., 2014; Gandikota et al., 2020; Chen et al., 2020;
Diakonikolas and Kane, 2020).

In the current paper, we look at linear classifiers (aka halfspaces) – one of the most fundamental
and well-studied classes of high-dimensional classifiers. In particular, we study the problem of
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learning mixtures of linear classifiers. We begin by describing our model. The parameters of the
model are k (unknown) weights w1, . . . , wk which are positive and sum to 1, k (unknown) unit
vectors v1, . . . , vk ∈ Rn. A sample is drawn as follows: the sample oracle select i ∈ [k] with
probability wi, then we receive (x,1⟨vi,x⟩≥0) where x ∼ N (0, In). The goal is to (approximately)
recover the weights w1, . . . , wk and the vectors v1, . . . , vk.

Towards explaining our results, let us define ∆ := minj ̸=j′ min{∥vj−vj′∥, ∥vj+vj′∥}. At a high
level, we give two algorithms for this problem. Both the algorithms have a polynomial dependence on
n – the ambient dimension. The first algorithm (Theorem 1) achieves a quasipolynomial dependence
on k with an exponential dependence on 1/∆. The second algorithm (Theorem 2) achieves a
polynomial dependence on 1/∆ but has an exponential dependence on k. A consequence of our
result is that as long as ∆ > 0, our model is identifiable. Further, note that if ∆ = 0 (and say
k = 2), the model is no longer identifiable. Thus, a dependence on 1/∆ is qualitatively necessary for
identifiability and a fortiori, for algorithmic results such as ours.

We note that both our model (Sun et al., 2014) as well as the broader question of learning
mixtures of (supervised) linear models has been extensively studied in the literature (Chaganty
and Liang, 2013; Gandikota et al., 2020; Chen et al., 2020), including in the context of neural
networks (Jacobs et al., 1991; Jordan and Jacobs, 1994; Bishop, 1998). Despite this interest, basic
statistical and algorithmic questions about this model remained open. As an example, until this work,
the identifiability of this model (even when k = 3) was unresolved to the best of our knowledge.

1.1. Our Results

Our first result achieves a running time (and sample complexity) guarantee of the form nO(log k)/∆2
.

Theorem 1 Given parameters ε, δ > 0, k ∈ N and wmin > 0 satisfying wmin ≤ min{w1, . . . , wk},
there is an algorithm that given samples from the model has the following guarantees:

1. The algorithm runs in sample complexity and time complexity

log2(1/δ)ε−2poly(n(log k)/∆2
, ((log k)/∆2)(log k)/∆

2
, 1/wmin).

2. With probabilty 1− δ, the algorithm returns estimates {ŵj , v̂j : j ∈ [k]} such that

min
π∈Perm([k])

(
max{∥v̂j − vπ(j)∥ : j ∈ [k]}+max{

∣∣ŵj − wπ(j)

∣∣ : j ∈ [k]}
)
≤ ε,

where the min is the minimum is over permutations π on [k].

The above running time guarantee is quasi-polynomial time as long as ∆ = Ω(1); moreover, it is
polynomial time where k = O(1) as well. The algorithm recovers all the unknown parameters within
an error ε > 0, up to an ambiguity in relabeling the k components of the mixture (this is captured by
the permutation π).

Our second result gives a poly((n/∆)k) running time and sample complexity guarantee.

Theorem 2 Given parameters ε, δ > 0, k ∈ N and wmin > 0 satisfying wmin ≤ min{w1, . . . , wk},
there is an algorithm that given samples from the model has the following guarantees:

1. The algorithm runs in sample complexity and time complexity

log2(1/δ)ε−2poly(nk, kk,∆−k, 1/wmin)

2
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2. With probabilty 1− δ, the algorithm returns estimates {ŵj , v̂j : j ∈ [k]} such that

min
π∈Perm([k])

(
max{∥v̂j − vπ(j)∥ : j ∈ [k]}+max{

∣∣ŵj − wπ(j)

∣∣ : j ∈ [k]}
)
≤ ε.

The above theorem gives polynomial time guarantees as long as k is a constant. The above two
algorithmic results (Theorem 1 and Theorem 2) both have a polynomial dependence on the ambient
dimension n, but trade off different exponential dependencies on k and the separation ∆. When
∆ = ω(

√
log k/k), Theorem 1 gives a faster algorithm that becomes quasi-polynomial time when

∆ = Ω(1). Meanwhile, Theorem 2 gives a faster algorithm when ∆ = o(
√
log k/k); it remain

polynomial time for k = O(1) even when ∆ has an inverse polynomial dependence on n.
Both of the above theorems are related to the following theorem, which achieves a running

time of (n/ε)O(ℓ) as long as the k vectors formed by the ℓ-th tensor power of the parameter vectors
v⊗ℓ
1 , v⊗ℓ

2 , . . . , v⊗ℓ
k ∈ Rnℓ

are linearly independent (in a robust sense).

Theorem 3 Let ℓ ∈ N. Let U ∈ Rnℓ×k be the matrix whose jth column is flattened v⊗ℓ
j . Suppose

σmin(U) ≥ 1/τ , where τ > 0. Given parameters ε, δ > 0, k ∈ N and wmin > 0 satisfying
wmin ≤ min{w1, . . . , wk}, there is an algorithm ESTIMATE-PARAMETER that given samples from
the model has the following guarantees:

1. The algorithm runs in sample complexity and time complexity

log2(1/δ)ε−2poly(nℓ, ℓℓ, τ, 1/wmin).

2. With probabilty 1− δ, the algorithm returns estimates {ŵj , v̂j : j ∈ [k]} such that

min
π∈Perm([k])

(
max{∥v̂j − vπ(j)∥ : j ∈ [k]}+max{

∣∣ŵj − wπ(j)

∣∣ : j ∈ [k]}
)
≤ ε.

Note that in the non-degenerate setting when the vectors v1, . . . , vk are linearly independent (in
a robust sense), Theorem 3 already gives a polynomial time guarantee. Theorem 1 and Theorem 2
prove that even in the general case, one can choose an appropriate value of ℓ in Theorem 3 to recover
the parameters.

Identifiability. The above algorithmic results succeed in uniquely identifying and recovering
the individual parameters. This is as opposed to just finding a distribution that fits the data. In
the parlance of statistics, our algorithm recovers the underlying model (sometimes referred to as
parameter estimation) as opposed to just doing density estimation. The identifiability results hold
as long as ∆ > 0. We remark that the model is not identifiable when ∆ = 0. This is because the
distribution induced by an equal weight mixture of two linear classifiers vi = u and vj = −u is the
same for every u ∈ Rn! Moreover when vi = vj , there is non-identifiability by redistributing the
weights of the two components arbitrarily. Hence our results prove identifiability under minimal
assumptions.

1.2. Overview of techniques

We now briefly describe the algorithmic ideas and techniques that we will need to establish Theorem 1
and Theorem 2. Our algorithms are based on the method-of-moments framework and use tensor

3
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decompositions to recover the parameters of the model. Our algorithmic results all use the same
algorithmic framework, that consists of two main parts:
(i) Extracting the low-rank tensor: We first design a procedure that gives a good estimate for any
ℓ ∈ N,

T =
k∑

j=1

wjv
⊗(2ℓ+1)
j , (1)

which is an order 2ℓ+1 tensor with a rank-k decomposition with one rank-1 term for each component.
(ii) Parameter recovery through tensor decomposition: We use an off-the-shelf algorithm for low-rank
tensor decomposition, and show that they recover the parameters successfully.

(i) Extracting the low-rank tensor. Unlike latent variable models like mixtures of Gaussians (Moitra
and Valiant, 2010; Janzamin et al., 2019), it is challenging to obtain a low-rank tensor by simply
estimating the moments, for a linear threshold function (linear classifier). In order to estimate∑k

j=1wjv
⊗(2ℓ+1)
j , we will instead use Hermite polynomials and consider coefficients of linear

threshold functions in the Hermite basis. For a unit vector v ∈ Rn, define D(v) be the distribution
corresponding to N (0, In) conditioned on {x : 1⟨v,x⟩≥0}. The key observation is that:

Ex∼D(v)[He
(2ℓ+1)(x)] ∝ v⊗(2ℓ+1),

where He(2ℓ+1)(·) is the (2ℓ+1)th order n-variable Hermite tensor (and the constant of proportionality
is non-zero). See Definition 9 for a formal definition. We remark that Hermite polynomials have been
used in a similar vein in the context of other learning problems like depth-2 neural networks (Janzamin
et al., 2015; Ge et al., 2018; Awasthi et al., 2021).

Let D be the distribution of the positively-labeled samples. Note that D is just convex combina-
tion of D(v1), . . . ,D(vk). Hence

Ex∼D[He(2ℓ+1)(x)] ∝
k∑

j=1

wjv
⊗(2ℓ+1)
j .

The above relation naturally suggests the following meta-algorithm. We acquire few i.i.d.
positive-labeled samples, the output will be the (rescaled) empirical mean of (2ℓ+1)th order Hermite
tensor evaluation. This is described in the Algorithm 1. We prove the following guarantee for
estimating the tensor in Section 3.

Theorem 4 There is an algorithm EXTRACTING THE LOW-RANK TENSOR that for a given k, ℓ,
error tolerance parameters ε, δ > 0 O(v1, · · · , vk, w1, · · · , wk), and access to samples from the
model has the following guarantees:

1. The algorithm runs in sample complexity and time complexity log2(1/δ)/(ε2) · nO(ℓ)ℓO(ℓ).

2. With probability 1− δ, the algorithm returns estimates T ∈ (Rn)⊗ℓ such that

∥T−

 k∑
j=1

wjv
⊗(2ℓ+1)
j

∥F ≤ ε.

4
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(ii) Recovering the parameters through tensor decompositions Once we have access to the
tensor in (1), we use an off-the-shelf algorithm for efficient tensor decompositions (see Theorem 18).
Polynomial algorithms exist for decomposing a rank-k tensor of the form in (1) as long as the
flattened vectors given by {v⊗ℓ

i : i ∈ [k]} are linearly independent (in a robust sense). This is
encapsulated in Theorem 3. To establish Theorem 1 and Theorem 2, we need to prove that the
(robust) linear independence condition holds for a sufficiently large value of ℓ.

To prove Theorem 1, we show that ℓ = O(log k/∆2) suffices for {v⊗ℓ
i : i ∈ [k]} to be linearly

independent. The key observation is that for i ̸= j, ⟨v⊗ℓ
i , v⊗ℓ

j ⟩ = (⟨vi, vj⟩)ℓ decreases exponentially
as ℓ grow. In fact, if the pairwise inner product of v⊗ℓ

1 , . . . , v⊗ℓ
k is at most 1/(2k), we can show that

v⊗ℓ
1 , . . . , v⊗ℓ

k is robustly linear independent. This gives a running time of nO(log k)/∆2
.

To prove Theorem 2 we use a different approach to prove that ℓ = k suffices for v⊗ℓ
1 , . . . , v⊗ℓ

k to
be linear independent in a robust sense. In particular, we use the notion of Kruskal rank to quantify
the degree of linear independence with tensoring. The Kruskal rank (or Krank) of a matrix A is the
largest k for which every set of k columns are linearly independent. The Khatri-Rao product of U
and V which are size m× r and n× r respectively is an mn× r matrix U ⊙ V whose ith column is
flattened ui ⊗ vi. Let A ∈ Rn×k be the matrix whose jth column is vj . Observe that pairwise linear
independence implies Krank(A) ≥ 2. Let U ∈ Rnℓ×k be the matrix whose jth column is flattened
v⊗ℓ
j . Observe that U = A⊙k.

The idea is that Kruskal-rank increases with Khatri–Rao product. As a consequence, Krank(U) ≥
k, i.e., v⊗k

1 , . . . , v⊗k
k are linear independent, thus establishing Theorem 2.

Comparison to Prior work Mixtures of supervised learning models like linear classifiers and
other linear models have been extensively studied in machine learning literature (Jacobs et al., 1991;
Chaganty and Liang, 2013; Gandikota et al., 2020; Chen et al., 2020), including in the context of
neural networks as hierarchical mixtures of experts (Jacobs et al., 1991; Jordan and Jacobs, 1994;
Bishop, 1998). The result that is most closely related to ours is that of Sun et al. (2014). Their model
is the same as ours and in a nutshell, their main result shows that if the vectors v1, . . . , vk are linearly
independent, then there is a polynomial time algorithm that recovers the k-dimensional subspace
spanned by the vectors v1, . . . , vk. However, the algorithm does not recover the parameters of the
model. We do not know of algorithmic results on recovering the parameters of the mixture of k linear
classifiers in any non-trivial setting. To be the best of our knowledge, even identifiability results for
the model were not known for general k.

Our algorithms recover all the unknown parameters of the mixture (hence implying identifiability).
The running time of the algorithms is either nO(log k)/∆2

or nO(k). Moreover, when the vectors
v1, . . . , vk are linearly independent as in (Sun et al., 2014), Theorem 3 successfully recovers all the
parameters in polynomial time.

2. Preliminaries and Notation

We start by defining the Mixture-of-Linear-Classifier problem formally.

Definition 5 The Mixture-of-Linear-Classifier is instantiated by k unit vectors v1, · · · , vk in Rn. In
addition, we also have k corresponding weights w1, · · · , wk such that w1 + · · ·+ wk = 1.
The vectors v1, · · · , vk in Rn as well as the weights w1, · · · , wk are unknown. For this instance,
the sampling oracle O(v1, · · · , vk, w1, · · · , wk) is defined as follows: sample x ∼ N (0, In),
the standard spherical Gaussian in Rn. Sample z ∈ [k] where P[z = j] = wj ,∀j ∈ [k].

5
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O(v1, · · · , vk, w1, · · · , wk) outputs (x,1⟨x,vz⟩≥0) ∈ Rn × {0, 1}.
In the Mixture-of-Linear-Classifier problem, the algorithm is given access to the number of compo-
nent k, the sample oracle O(v1, · · · , vk, w1, · · · , wk), an error parameter ε and a weight parameter
wmin ≥ 0 with the promise that wmin ≤ min{w1, · · · , wk}. The goal of the algorithm is to output
estimates {ŵj , v̂j : j ∈ [k]} such that

min
π

(
max{∥v̂j − vπ(j)∥ : j ∈ [k]}+max{

∣∣ŵj − wπ(j)

∣∣ : j ∈ [k]}
)
≤ ε,

where the min is over all permutations on [k].

Notation. We use ∇
t

(d) to the denote the d-th order differential operator (with respect to t).
We next definite Hermite polynomials. We begin with univariate Hermite polynomials.

Definition 6 The dth univariate Hermite polynomial Hed(x) : R → R is the formal polynomial

Hed(x) =

((
∂

∂t

)d

exp(xt− t2/2)

)∣∣∣∣∣
t=0

.

The following observation gives a recursive relation between Hed and Hed+1.

Observation 7 For d ∈ Z≥0,

d

dx

(
Hed(x)e

−x2/2
)
= −Hed+1(x)e

−x2/2

Proof We use Rodrigues formula for the Hermite polynomial (see e.g., equation (10) of Patarroyo,
2019), which is:

Hed(x) = (−1)de
x2

2

(
d

dx

)d(
e

−x2

2

)
.

Or equivalently,

Hed(x)e
−x2

2 = (−1)d
(

d

dx

)d(
e

−x2

2

)
.

The claim now follows easily.

The next observation gives an explicit formula for univariate Hermite polynomials.

Observation 8 (see equation (3) of Patarroyo, 2019) For d ∈ Z≥0, we have

Hed(x) = d!

⌊ d
2
⌋∑

j=0

(−1)j

2j(d− 2j)!j!
xd−2j

Next, we define multivariable Hermite polynomials.

Definition 9 For n ∈ N,d ∈ Z≥0. We use He(d) to denote the n-variable Hermite tensor of order d.
He(d) : Rn → (Rn)⊗d is defined as:

He(d)(x) =
(
∇
t

(d) exp(⟨x, t⟩ − ∥t∥2/2)
)∣∣∣

t=0
.

6
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3. Extracting the low-rank tensor

In this section, the main goal is to prove Theorem 4. Theorem 4 gives an algorithm which given
samples from a mixture of k linear classifiers, estimates the order-ℓ parameter moment. This result
is an important piece in our parameter recovery algorithm. The algorithm EXTRACTING THE

LOW-RANK TENSOR is described in Algorithm 1.

Theorem 4 There is an algorithm EXTRACTING THE LOW-RANK TENSOR that for a given k, ℓ,
error tolerance parameters ε, δ > 0 O(v1, · · · , vk, w1, · · · , wk), and access to samples from the
model has the following guarantees:

1. The algorithm runs in sample complexity and time complexity log2(1/δ)/(ε2) · nO(ℓ)ℓO(ℓ).

2. With probability 1− δ, the algorithm returns estimates T ∈ (Rn)⊗ℓ such that

∥T−

 k∑
j=1

wjv
⊗(2ℓ+1)
j

∥F ≤ ε.

Algorithm 1: EXTRACTING THE LOW-RANK TENSOR

Input:
k – number of components
O(v1, · · · , vk, w1, · · · , wk) – oracle for random samples from the mixture
ℓ – parameter for order of the tensor
ε – error parameter
Output:
T ∈ (Rn)⊗(2ℓ+1) – estimate of

∑k
j=1wjv

⊗(2ℓ+1)
j

1 Set t = (ε−2)nO(ℓ)ℓO(ℓ);
2 Use O(v1, · · · , vk, w1, · · · , wk) to sample t independent vectors x1, . . . ,xt from D;
3 return T = 1/t

∑
j∈[t] 1/c(ℓ)He

(2ℓ+1)(xj), where c(ℓ) =
√
2/π(−1)ℓ(2ℓ− 1)!!;

The main idea behind the algorithm is to show that over the positive samples, the expectation
of the (2ℓ + 1)th-order Hermite tensor is proportional to

∑
j∈[k]wjv

⊗(2ℓ+1)
j . Based on this, our

algorithm is to just output an empirical estimator for the average (2ℓ+ 1)th-order Hermite tensor.
The rest of this section is dedicated to proving the correctness of Algorithm 1 (Theorem 4) Towards
this, we start with some definitions.

Definition 10 Let v ∈ Rn, x ∼ N (0, In). Define D(v) as the conditional distribution of x given
⟨v,x⟩ ≥ 0. Or equivalently, the probability density function of D(v) is given by

(2π)−n/2e−∥z∥2/2 · 21⟨v,z⟩≥0.

Define D to be the distribution corresponding to positive samples from O(v1, · · · , vk, w1, · · · , wk).
Or equivalently, D =

∑
j∈[k]wjD(vj).

The following observation says that the ℓ-th order derivative (with respect to t) of f(⟨v, t⟩) is
proportional to v⊗ℓ. It can be easily derived from the chain rule.

7
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Observation 11 Let f : R → R be infinitely differentiable, v ∈ Rn, ℓ ∈ N. Then,

∇
t

(ℓ)(f(⟨v, t⟩)) = f (ℓ)(⟨v, t⟩) · v⊗ℓ

Next, we define a function Ψ(t) (which is the mass that the Gaussian centered at t puts on [0,∞))
and obtain an explicit formula for its derivatives of odd order.

Claim 12 Define Ψ : R → R to be

Ψ(t) =

∫
R
exp (−(x− t)2/2)1x≥0dx.

For all ℓ ∈ Z≥0, we have

Ψ(2ℓ+1)(0) = (−1)ℓ(2ℓ− 1)!!

Proof To prove the above equality, we first swap the integration with differentiation and relate the
resulting expression to Hermite polynomials.
We know that

Ψ(t) =

∫ ∞

0
exp (−(x− t)2/2)dx =

∫ ∞

0
exp (tx− t2/2) exp (−x2/2)dx.

Hence, Ψ(2ℓ+1)(0) =

((
∂

∂t

)2ℓ+1

f

)∣∣∣∣∣
t=0

=

(∫ ∞

0

(
∂

∂t

)2ℓ+1

exp (tx− t2/2) exp (−x2/2)dx

)∣∣∣∣∣
t=0

by Leibniz integral rule

=

∫ ∞

0

((
∂

∂t

)2ℓ+1

exp (tx− t2/2)

)∣∣∣∣∣
t=0

exp (−x2/2)dx

=

∫ ∞

0
He2ℓ+1(x) exp (−x2/2)dx

=

∫ ∞

0
d
(
−He2ℓ(x) exp (−x2/2)

)
see Observation 7

= He2ℓ(0) = (−1)ℓ(2ℓ− 1)!! by Observation 8

The following lemma is crucial in establishing Theorem 4. The lemma proves that the expectation
of (2ℓ+ 1)th-order Hermite tensor over D is proportional to

∑
j∈[k]wjv

⊗(2ℓ+1)
j .

Lemma 13 For ℓ ∈ Z≥0,

Ex∼D[1/c(ℓ)He(2ℓ+1)(x)] =
∑
j∈[k]

wjv
⊗(2ℓ+1)
j ,

where c(ℓ) =
√
2/π(−1)ℓ(2ℓ− 1)!!.

8
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Proof The high-level idea is to reduce the problem to the case k = 1. In particular, since D =∑
j∈[k]wjD(vj), it suffices to show that: for all unit vector v ∈ Rn,

Ex∼D(v)[He
(2ℓ+1)(x)] =

√
2

π
(−1)ℓ(2ℓ− 1)!! · v⊗(2ℓ+1).

Towards this, recall that,

He(2ℓ+1)(x) =
(
∇
t

(2ℓ+1) exp(⟨x, t⟩ − ∥t∥2/2)
)∣∣∣

t=0
.

Then,

Ex∼D(v)[He
(2ℓ+1)(x)]

= 2(
1√
2π

)n
∫
Rn

He(2ℓ+1)(x)1⟨x,v⟩≥0 exp (−∥x∥2/2)dx using Definition 10

= 2(
1√
2π

)n
∫
Rn

(
∇
t

(2ℓ+1) exp(⟨x, t⟩ − ∥t∥2/2)
)∣∣∣

t=0
1⟨x,v⟩≥0 exp (−∥x∥2/2)dx

= 2(
1√
2π

)n
(
∇
t

(2ℓ+1)

∫
Rn

exp (−∥x− t∥2/2)1⟨x,v⟩≥0dx

)∣∣∣∣
t=0

by Leibniz integral rule

Let U be an orthonormal matrix such that the first row equals vT . Thus, we have

Ex∼D(v)[He
(2ℓ+1)(x)]

= 2(
1√
2π

)n
(
∇
t

(2ℓ+1)

∫
Rn

exp (−∥y − Ut∥2/2)1y1≥0dy

)∣∣∣∣
t=0

change of variables, y = Ux

=
2√
2π

(
∇
t

(2ℓ+1)

∫
R
exp (−(y1 − ⟨v, t⟩)2/2)1y1≥0dy1

)∣∣∣∣
t=0

=
2√
2π

(
∇
t

(2ℓ+1)Ψ(⟨v, t⟩)
)∣∣∣

t=0
by Claim 12

=
2√
2π

(
Ψ(2ℓ+1)(⟨v, t⟩) · v⊗(2ℓ+1)

)∣∣∣
t=0

by Observation 11

=

√
2

π
(−1)ℓ(2ℓ− 1)!!v⊗(2ℓ+1) by Claim 12

Our next goal is to bound the variance of our estimator in Algorithm 1. Towards this, we start with
the following simple claim.

Claim 14 Let f : Rn → R such that f(x) = f(−x), ∀x ∈ Rn. Then,

Ex∼D[f(x)] = Ex∼N (0,In)[f(x)]

Proof First, using the fact that the distribution 1/2(D(vj) +D(−vj)) is N (0, In) and f is even, it
follows that

Ex∼D(vj)[f(x)] = Ex∼N (0,In)[f(x)].

9
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We now get the claim by noting that D is a convex combination of D(v1), . . . ,D(vk).

Next, we upper bound the variance of a polynomial under the distribution D.

Claim 15 Let s ∈ N. Let m1, . . . ,ms : Rn → R be monomials of degree at most t. Let α =
(α1, . . . , αs) ∈ Rs. Then,

Ex∼D[(α1m1(x) + . . .+ αsms(x))
2] ≤ s(2t− 1)!!∥α∥2.

Proof The idea is to apply Claim 14. Claim 14 which lets us reduce the problem of computing the
variance under D to that under the standard Gaussian.

Ex∼D[(α1m1(x) + . . .+ αsms(x))
2]

≤ Ex∼D[s(
∑
j∈[s]

α2
jmj(x)

2)] by Cauchy–Schwarz inequality

= Ex∼N (0,In)[s(
∑
j∈[s]

α2
jmj(x)

2)] by Claim 14

≤ s(2t− 1)!!∥α∥2.

The last inequality follows from the fact that mj(x)
2 is a monomial of degree at most 2t and thus

its expectation under a Gaussian is at most (2t − 1)!!. It is well-known that Ex∼N (0,1)[x
2d] =

(2d− 1)!!,∀d ∈ N. A standard induction will give us the above fact.

The next proposition shows that Varx∼D[He
(2ℓ+1)
α (x)] is at most ℓO(ℓ) for any fixed index α.

Proposition 16 For ℓ ∈ N with ℓ ≥ 2, fix α ∈ [n]2ℓ+1,

Var
x∼D

[
1

c(ℓ) · He
(2ℓ+1)
α (x)

]
≤ ℓc1ℓ,

where c(ℓ) =
√
2/π(−1)ℓ(2ℓ− 1)!! and c1 is an absolute constant.

Proof We begin by noting that

Var
x∼D

[He(2ℓ+1)
α (x)] ≤ Ex∼D

[(
He(2ℓ+1)

α (x)
)2]

By definition, He(2ℓ+1)
α (x) can be expressed as

∏n
j=1Hesj (xj) where:

1. s1, . . . , sn ∈ Z≥0 depend on α.

2.
∑n

j=1 sj = 2ℓ+ 1.

Hence He
(2ℓ+1)
α (x) is a polynomial of degree at most 2ℓ + 1 and can be expanded as β1m1(x) +

. . .+ βzmz(x) where:

1. m1, . . . ,mz are monomials,

10
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2. z ≤ (2ℓ+ 1)(2ℓ+1),

3. for all j ∈ [z], |βj | ≤ (2ℓ+ 1)!.

The second item is true because Hes(·) has at most 2s+1 terms (see Observation 8) and He
(2ℓ+1)
α (x)

can be expressed as
∏n

j=1Hesj (xj). The last item is true because every coefficient of Hes is bounded
by s! (see Observation 8) and

∏n
j=1 sj ! ≤ (

∑n
j=1 sj)! = (2ℓ+ 1)!.

Apply Claim 15, we have

Ex∼D[He(2ℓ+1)
α (x)2] ≤ z(4ℓ+ 1)!!(z ((2ℓ+ 1)!)2) ≤ ℓc

′ℓ,

where c′ is an absolute constant.

We are now ready to finish the proof of Theorem 4.
Proof of Theorem 4. Without loss of generality, we can assume δ = 0.1, since we can always
boost the success probability at a multiplicative cost of O(log(1/δ)2) via Claim 24. Define T ∗ =∑k

j=1wjv
⊗(2ℓ+1)
j . We will show T is close to T ∗ with probability at least 0.9, where T is the

empirical mean of 1/c(ℓ)He(2ℓ+1)(x). By Lemma 13, T ∗ = Ex∼D[1/c(ℓ)He(2ℓ+1)(x)], hence
T ∗ = E[T]. Fix α ∈ [n]2ℓ+1, from Proposition 16 we know that

Var[Tα] =
1

t
Var
x∼D

[1/c(ℓ)He(2ℓ+1)
α (x)]

≤ ℓc1ℓ/t,

where c1 is an absolute constant. By Chebyshev’s inequality,

P[|Tα − T ∗
α| ≥

ε√
n2ℓ+1

] ≤ ℓc1ℓ/t
ε2

n2ℓ+1

=
ℓc1ℓn2ℓ+1

tε2

Then,

P[∨α∈[n]2ℓ+1{|Tα − T ∗
α| ≥

ε√
n2ℓ+1

}] ≤ ℓc1ℓn4ℓ+2

tε2

≤ 0.01 by the choice of t.

Hence,

P[∧α∈[n]2ℓ+1{|Tα − T ∗
α| <

ε√
n2ℓ+1

}] ≥ 0.99

As a result,

P[∥T− T ∗∥F ≤ ε] ≥ 0.99

■

11
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4. Estimation algorithm for the Parameters of the Mixture of Linear Classifiers

In this section, we prove Theorem 1 and Theorem 2. Recall that ∆ = minj ̸=j′ min{∥vj − vj′∥, ∥vj +
vj′∥}. Theorem 1 shows that there is an algorithm learns a mixture of k linear classifiers in time
poly(n(log k)/∆2

), where ∆ is the minimum “separation” between each pair of linear classifiers.
Meanwhile, Theorem 2 shows that there is an algorithm that does the same thing in time that is
roughly poly((n/∆)k). When ∆ = ω(

√
log k/k), Theorem 1 gives a faster algorithm. Meanwhile,

Theorem 2 gives a faster algorithm when ∆ = o(
√
log k/k).

Theorem 1 Given parameters ε, δ > 0, k ∈ N and wmin > 0 satisfying wmin ≤ min{w1, . . . , wk},
there is an algorithm that given samples from the model has the following guarantees:

1. The algorithm runs in sample complexity and time complexity

log2(1/δ)ε−2poly(n(log k)/∆2
, ((log k)/∆2)(log k)/∆

2
, 1/wmin).

2. With probabilty 1− δ, the algorithm returns estimates {ŵj , v̂j : j ∈ [k]} such that

min
π∈Perm([k])

(
max{∥v̂j − vπ(j)∥ : j ∈ [k]}+max{

∣∣ŵj − wπ(j)

∣∣ : j ∈ [k]}
)
≤ ε,

where the min is the minimum is over permutations π on [k].

Theorem 2 Given parameters ε, δ > 0, k ∈ N and wmin > 0 satisfying wmin ≤ min{w1, . . . , wk},
there is an algorithm that given samples from the model has the following guarantees:

1. The algorithm runs in sample complexity and time complexity

log2(1/δ)ε−2poly(nk, kk,∆−k, 1/wmin)

2. With probabilty 1− δ, the algorithm returns estimates {ŵj , v̂j : j ∈ [k]} such that

min
π∈Perm([k])

(
max{∥v̂j − vπ(j)∥ : j ∈ [k]}+max{

∣∣ŵj − wπ(j)

∣∣ : j ∈ [k]}
)
≤ ε.

The basic idea of the above two theorems are the same. Roughly speaking, Theorem 18 (from
Bhaskara et al. (2014a)) says we can decompose a noisy third-order low-rank tensor efficiently under
some mild non-degeneracy conditions. By Theorem 4, we can estimate T ∗ =

∑
j∈[k]wjv

⊗(2ℓ+1)
j

accurately. Note that T ∗ can be viewed as a third-order low-rank tensor
∑

j∈[k](v
⊗ℓ
j )⊗(v⊗ℓ

j )⊗(wjvj).
Our approach will be combining Theorem 4 and Theorem 18.

In order to combine Theorem 4 and Theorem 18,
∑

j∈[k](v
⊗ℓ
j ) ⊗ (v⊗ℓ

j ) ⊗ (wjvj) needs to
satisfy the conditions of Theorem 18. The major challenge is to show that v⊗ℓ

1 , . . . , v⊗ℓ
k are linear

independent in a robust sense (that is measured in terms of the least singular value of the nℓ × k
matrix formed by the flattenings of these k tensored vectors as columns). Theorem 1 and Theorem 2
use different approaches to establish this condition. On the one hand, Claim 19 shows that ℓ =
10(log k)/∆2 suffices. This leads to Theorem 1. On the other hand, Claim 22 shows that ℓ = k
suffices (even when ∆ can be a small inverse polynomial in n). This leads to Theorem 2.

We start by introducing the concept of Kruskal rank for convenience.

12



ALGORITHMS FOR LEARNING A MIXTURE OF LINEAR CLASSIFIERS

Definition 17 (Definition 1.2, Bhaskara et al. (2014a)) The Kruskal rank (or Krank) of a matrix
A is the largest k for which every set of k columns are linearly independent. Also the τ -robust
Krank is denoted by Krankτ (A), and is the largest k for which every n× k sub-matrix A|S of A has
σk(A|S) ≥ 1/τ .

The following theorem from Bhaskara et al. (2014a) is crucial; see also (Janzamin et al., 2019;
Goyal et al., 2014) for related tensor decomposition guarantees. Suppose U ∈ Rm×R, V ∈
Rn×R,W ∈ Rp×R. The theorem says that: if U, V are well-conditioned and columns of W
are "pairwise well-conditioned", there is an algorithm that can recover all the rank-one terms from
T =

∑R
i=1 ui⊗vi⊗wi efficiently. Moreover, the algorithm can also tolerate some inverse polynomial

amount of noise.

Theorem 18 (Theorem 2.3, Bhaskara et al. (2014a)) Suppose U ∈ Rm×R, V ∈ Rn×R,W ∈
Rp×R. ui, vi, wi are the ith column of U, V,W , respectively. Suppose U, V,W satisfy that:

1. The condition numbers κ(U), κ(V ) ≤ κ,

2. The column vectors of W are not close to parallel: Krank1/δ(W ) ≥ 2,

3. The decompositions are bounded : for all i, ∥ui∥2, ∥vi∥2, ∥wi∥2 ≤ C.

Suppose we are given tensor T + E ∈ Rm×n×p with the entries of E being bounded by ε ·
poly(1/κ, 1/m, 1/n, 1/p, δ, 1/C) and moreover T has a decomposition T =

∑R
i=1 ui ⊗ vi ⊗ wi.

There is an algorithm with the following guarantee:

1. The algorithm runs in time complexity poly(m,n, p).

2. With probability 0.99, the algorithm returns each rank one term in the decomposition of T (up
to renaming), within an additive error of ε.

The next claim says the following. We can view
∑

j∈[k]wjv
⊗(2ℓ+1)
j as

∑
j∈[k](v

⊗ℓ
j )⊗ (v⊗ℓ

j )⊗
(wjvj). If ℓ = 10(log k)/∆2, the above tensor satisfy the condition of Theorem 18.

Claim 19 Define ∆ = minj ̸=j′ min{∥vj − vj′∥, ∥vj + vj′∥}. Suppose ∆ > 0. Define ℓ =

10(log k)/∆2. Consider
∑

j∈[k]wjv
⊗(2ℓ+1)
j =

∑
j∈[k](v

⊗ℓ
j )⊗ (v⊗ℓ

j )⊗ (wjvj). Let U ∈ Rnℓ×k be

the matrix whose jth column is flattened v⊗ℓ
j . Let W ∈ Rn×k be the matrix whose jth column is

wjvj . Then the following hold:

1. The condition numbers κ(U) ≤ poly(k),

2. For all i ̸= j, we have wivi, wjvj are not close to parallel: Krank2/(wmin∆)(W ) ≥ 2,

3. For all j, we have ∥v⊗k
j ∥F , ∥wjvj∥ ≤ 1.

Proof Proof of part (1):
The main idea is the following. We have

⟨v⊗ℓ
i , v⊗ℓ

j ⟩ =

{
1 i = j

⟨vi, vj⟩ℓ i ̸= j

13
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Since ⟨vi, vj⟩ℓ → 0 as ℓ → ∞, we have that UTU → I as ℓ → ∞. Hence we expect κ(U) is small
if ℓ is sufficiently large.

Using the variational characterization for singular values:

σmin(U) = ∥α1v
⊗ℓ
1 + . . .+ αkv

⊗ℓ
k ∥F

for some unit vector (α1, . . . , αk).
Without loss of generality, we assume

1. |α1| is the greatest one among {|α1|, . . . , |αk|},

2. α1 ≥ 0.

From Cauchy–Schwarz, we have

∥α1v
⊗ℓ
1 + . . .+ αkv

⊗ℓ
k ∥F ≥ ⟨α1v

⊗ℓ
1 + . . .+ αkv

⊗ℓ
k , v⊗ℓ

1 ⟩
= α1 + α2⟨v⊗ℓ

2 , v⊗ℓ
1 ⟩+ . . .+ αk⟨v⊗ℓ

k , v⊗ℓ
1 ⟩

= α1

(
1 + α2/α1⟨v⊗ℓ

2 , v⊗ℓ
1 ⟩+ . . .+ αk/α1⟨v⊗ℓ

k , v⊗ℓ
1 ⟩
) (2)

For any j ̸= 1,

|αj/α1⟨v⊗ℓ
j , v⊗ℓ

1 ⟩| ≤ |⟨v⊗ℓ
j , v⊗ℓ

1 ⟩| = |⟨vj , v1⟩|ℓ

≤ (1−∆2/2)ℓ since ∆ = min
j ̸=j′

min{∥vj − vj′∥, ∥vj + vj′∥}

≤ exp(−∆2ℓ/2) ≤ 1

2k
.

Applying the above inequality along with (2), we get

σmin(U) ≥ α1(1− (k − 1)/2k) ≥ α1

2
≥ 1

2
√
k

Meanwhile

∥U∥2 ≤ ∥U∥2F =
∑
j∈[k]

∥v⊗k
j ∥2F = k.

Therefore part (1) is true.
Proof of part (2): It follows by the definition ∆ = minj ̸=j′ min{∥vj − vj′∥, ∥vj + vj′∥}.
Proof of part (3): Recall that {vj} are unit vectors.

Next, we introduce the concept of Khatri-Rao product for convenience.

Definition 20 (Definition 1.3, Bhaskara et al. (2014a)) The Khatri-Rao product of U and V which
are size m × r and n × r respectively is an mn × r matrix U ⊙ V whose ith column is flattened
ui ⊗ vi.

The next lemma is a robust analogue of the following fact: Krank(A⊙B) ≥ min{Krank(A) +
Krank(B) − 1, R}, where A,B are matrix with R columns. Intuitively, it means that Krank will
increase with Khatri-Rao product. It will be used to prove Claim 22.

14
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Lemma 21 (Lemma A.4, Bhaskara et al. (2014b)) A,B are matrix with R columns. Say Krankτ1(A) ≥
kA,Krankτ2(B) ≥ kB , where kA, kB ∈ N. Let t = min{kA+kB −1, R}. Then Krank(τ1τ2

√
t)(A⊙

B) ≥ t.

We will need the following claim, which shows that:
∑

j∈[k]wjv
⊗(2k+1)
j =

∑
j∈[k](v

⊗k
j ) ⊗

(v⊗k
j )⊗ (wjvj) satisfies the condition of Theorem 18. This means we can recover the rank-one terms

from
∑

j∈[k]wjv
⊗(2k+1)
j .

Claim 22 Define ∆ = minj ̸=j′ min{∥vj−vj′∥, ∥vj+vj′∥}. Suppose ∆ > 0. Consider
∑

j∈[k]wjv
⊗(2k+1)
j =∑

j∈[k](v
⊗k
j )⊗ (v⊗k

j )⊗ (wjvj). Let U ∈ Rnk×k be the matrix whose jth column is flattened v⊗k
j .

Let W ∈ Rn×k be the matrix whose jth column is wjvj . Then the following hold:

1. The condition numbers κ(U) ≤ (1/∆)O(k)kO(k),

2. For all i ̸= j, we have wivi, wjvj are not close to parallel: Krank2/(wmin∆)(W ) ≥ 2,

3. For all j, we have ∥v⊗k
j ∥F , ∥wjvj∥ ≤ 1.

Proof Proof of part (1): The main idea is to apply Lemma 21. Let A ∈ Rn×k be the matrix whose
jth column is vj . Observe that U = A⊙k. Roughly speaking, note that Krank(A) ≥ 2, we have
Krank(A⊙(k−1)) ≥ k. A⊙(k−1) has full column rank, so as U .

Let A ∈ Rn×k be the matrix whose jth column is vj . Observe that U = A⊙k. We know that
Krank2/∆(A) ≥ 2 by the definition ∆ = minj ̸=j′ min{∥vj − vj′∥, ∥vj + vj′∥}. Apply Lemma 21
inductively, we have

Krank((2/∆)k
√
k!·k)A

⊙k ≥ k.

In other word,

σmin(A
⊙k) ≥ (∆/2)k/

√
k! · k = ∆O(k)k−O(k).

Meanwhile

∥U∥2 ≤ ∥U∥2F =
∑
j∈[k]

∥v⊗k
j ∥2F = k.

Therefore part (1) is true.
Proof of part (2): It follows by the definition ∆ = minj ̸=j′ min{∥vj − vj′∥, ∥vj + vj′∥}.
Proof of part (3): Recall that {vj} are unit vectors.

The next claim says that we can get an accurate estimate of v, w from a accurate estimate
of wv⊗(2ℓ+1). This is useful since we get k rank-one tensors of the form wv⊗(2ℓ+1) after apply
Theorem 18 (tensor decomposition) to

∑
j∈[k]wjv

⊗(2ℓ+1)
j . While it is easy and standard, we include

it here for the sake of completeness.

15
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Claim 23 Let ℓ ∈ N, ε, w ∈ (0, 1]. Let v ∈ Rn be a unit vector. {eα : α ∈ [n]} is the standard
basis of Rn. Suppose T ∈ (Rn)⊗(2ℓ+1) satisfies that

∥wv⊗(2ℓ+1) − T∥F ≤ εw

4nℓ
.

Let ŵ ∈ R, v̂ ∈ Rn be such that ŵ = ∥T∥F , v̂α = ⟨T,eα⊗I⊗ℓ
n ⟩

ŵ ,∀α ∈ [n]. Then

|w − ŵ| ≤ ε (3)

∥v − v̂∥ ≤ ε

Proof Define

δ =
εw

4nℓ
.

By triangle inequality, |∥wv⊗(2ℓ+1)∥F − ∥T∥F | ≤ δ ≤ ε. Note ∥wv⊗(2ℓ+1)∥F = w, hence
|w − ŵ| ≤ δ ≤ ε, i.e., (3) is true.

Fix α ∈ [n]. By Cauchy-Schwarz inequality,

|⟨wv⊗(2ℓ+1) − T, eα ⊗ I⊗ℓ
n ⟩| ≤ δ∥eα ⊗ I⊗ℓ

n ∥F = δnℓ/2.

As a consequence,

|wvα − ⟨T, eα ⊗ I⊗ℓ
n ⟩| ≤ δnℓ/2.

We know that |ŵvα − wvα| ≤ |ŵ − w| ≤ δ. Then,

|ŵvα − ⟨T, eα ⊗ I⊗ℓ
n ⟩| ≤ δ(nℓ/2 + 1) ≤ 2δnℓ/2.

Hence,

|vα − ⟨T, eα ⊗ I⊗ℓ
n ⟩

ŵ
| ≤ 2δnℓ/2

ŵ
≤ 4δnℓ/2

w
.

The last inequality is due to |w − ŵ| ≤ δ ≤ w/2.
Then we have

∥v − v̂∥ ≤ 4δ
√
nnℓ/2

w
≤ ε

Next, we will prove Theorem 3. The main steps of the algorithm are:

1. Get a estimation of T ∗ =
∑

j∈[k]wjv
⊗(2ℓ+1)
j via Theorem 4.

2. Use Theorem 18 (tensor decomposition) to recover all the rank-one terms.

3. Use Claim 23 to recover the parameters from the rank-one terms.
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Theorem 3 Let ℓ ∈ N. Let U ∈ Rnℓ×k be the matrix whose jth column is flattened v⊗ℓ
j . Suppose

σmin(U) ≥ 1/τ , where τ > 0. Given parameters ε, δ > 0, k ∈ N and wmin > 0 satisfying
wmin ≤ min{w1, . . . , wk}, there is an algorithm ESTIMATE-PARAMETER that given samples from
the model has the following guarantees:

1. The algorithm runs in sample complexity and time complexity

log2(1/δ)ε−2poly(nℓ, ℓℓ, τ, 1/wmin).

2. With probabilty 1− δ, the algorithm returns estimates {ŵj , v̂j : j ∈ [k]} such that

min
π∈Perm([k])

(
max{∥v̂j − vπ(j)∥ : j ∈ [k]}+max{

∣∣ŵj − wπ(j)

∣∣ : j ∈ [k]}
)
≤ ε.

Algorithm 2: ESTIMATE-PARAMETER

Input:
k – the number of component
ℓ – parameter for order of the tensor
τ – parameter for lower bound on least singular value of U
O(v1, · · · , vk, w1, · · · , wk) – the sample oracle
ε – error parameter
wmin – weight lower bound
δ – failure probability
Output:
{ŵj , v̂j : j ∈ [k]} – estimate of {wj , vj : j ∈ [k]}

1 Apply Theorem 4, get T that is εpoly(n−ℓ, 1/τ, wmin)-close to
∑k

j=1wjv
⊗(2ℓ+1)
j with

probability at least 0.99;

2 View
∑

j∈[k]wjv
⊗(2ℓ+1)
j as

∑
j∈[k](v

⊗ℓ
j )⊗ (v⊗ℓ

j )⊗ (wjvj). By Theorem 18, with probability at
least 0.99, we can estimate each rank one term in the decomposition of T ∗ (up to renaming),
within additive error εwmin

8nℓ ;
3 By Claim 23, we can recover the parameters from the rank-one terms. This leads to estimates

{ŵj , v̂j : j ∈ [k]}.;
4 return {ŵj , v̂j : j ∈ [k]};

Proof The algorithm ESTIMATE-PARAMETER is described in Algorithm 2.
Without loss of generality, we can assume δ = 0.1. This is because we can always boost the

success probability of our algorithm at a multiplicative cost of O(log2(1/δ)) via Claim 24.
Let T ∗ =

∑
j∈[k]wjv

⊗(2ℓ+1)
j . By Theorem 4, there is an algorithm such that:

1. It runs with sample complexity and time complexity

ε−2poly(nℓ, ℓℓ, τ, 1/wmin)

2. With probability 0.99, we can estimate T ∗ within an additive error of εpoly(n−ℓ, 1/τ, wmin).
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View
∑

j∈[k]wjv
⊗(2ℓ+1)
j as

∑
j∈[k](v

⊗ℓ
j )⊗ (v⊗ℓ

j )⊗ (wjvj). We note that the following hold:

1. The condition numbers κ(U) ≤ kτ ,

2. For all i ̸= j, we have wivi, wjvj are not close to parallel: Krankτ/wmin
(W ) ≥ 2,

3. For all j, we have ∥v⊗k
j ∥F , ∥wjvj∥ ≤ 1.

Hence, T ∗ satisfies the condition of Theorem 18. By Theorem 18, with probability at least 0.99, we
can estimate each rank one term in the decomposition of T ∗ (up to renaming), within additive error
εwmin

8nℓ . By Claim 23, we can recover the parameters from the rank-one terms. This leads to estimates
{ŵj , v̂j : j ∈ [k]} such that

min
π

(
max{∥v̂j − vπ(j)∥ : j ∈ [k]}+max{

∣∣ŵj − wπ(j)

∣∣ : j ∈ [k]}
)
≤ ε,

where the min is over permutation π on [k].

We are now ready to finish the proof of Theorem 1 and Theorem 2. The proofs has the same
structure as Theorem 3.
Proof of Theorem 1. Without loss of generality, we can assume δ = 0.1. This is because we can
always boost the success probability of our algorithm at a multiplicative cost of O(log2(1/δ)) via
Claim 24. Define ℓ = 10(log k)/∆2.

Let T ∗ =
∑

j∈[k]wjv
⊗(2ℓ+1)
j . By Theorem 4, there is an algorithm such that

1. It runs in sample complexity and time complexity

ε−2poly(nℓ, k, ℓℓ, 1/wmin, 1/∆)

= ε−2poly(n(log k)/∆2
, ((log k)/∆2)(log k)/∆

2
, 1/wmin)

2. With probability 0.99, we can estimate T ∗ within an additive error of εpoly(1/nℓ, 1/k, 1/wmin, 1/∆).

By Claim 19, T ∗ satisfies the condition of Theorem 18. By Theorem 18, with probability at least
0.99, we can estimate each rank one term in the decomposition of T ∗ (up to renaming), within
additive error εwmin

8nℓ . By Claim 23, we can recover the parameters from the rank-one terms. This
leads to estimates {ŵj , v̂j : j ∈ [k]} such that

min
π

(
max{∥v̂j − vπ(j)∥ : j ∈ [k]}+max{

∣∣ŵj − wπ(j)

∣∣ : j ∈ [k]}
)
≤ ε,

where the min is over permutation π on [k]. ■

Proof of Theorem 2. Without loss of generality, we can assume δ = 0.1. This is because we can
always boost the success probability of our algorithm at a multiplicative cost of O(log2(1/δ)) via
Claim 24. Let T ∗ =

∑
j∈[k]wjv

⊗(2k+1)
j . By Theorem 4, there is an algorithm such that:

1. It runs in sample complexity and time complexity ε−2poly(nk, kk,∆−k, 1/wmin).

2. With probability 0.99, we can estimate T ∗ within an additive error of εpoly(∆k, k−k, n−k, wmin).
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By Claim 22, T ∗ satisfies the condition of Theorem 18. By Theorem 18, with probability at least
0.99, we can estimate each rank one term in the decomposition of T ∗ (up to renaming), within
additive error εwmin

8nk . By Claim 23, we can recover the parameters from the rank-one terms. This
leads to estimates {ŵj , v̂j : j ∈ [k]} such that

min
π

(
max{∥v̂j − vπ(j)∥ : j ∈ [k]}+max{

∣∣ŵj − wπ(j)

∣∣ : j ∈ [k]}
)
≤ ε,

where the min is over permutation π on [k]. ■
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Appendix A. Auxiliary claim

The following claim is well-known, though we do not know a suitable reference for it. We include it
here for the sake of completeness.

Claim 24 Let X be a metric space with metric d. There is a fixed hidden element x∗ ∈ X . ε > 0.
Suppose there is a randomized algorithm ALG whose output x satisfies

P[d(x, x∗) ≤ ε] ≥ 0.9.

Then, there is an algorithm SUCCESS-PROB-BOOSTER with the following guarantee: given access
to d, independent outputs from the algorithm ALG and a confidence parameter δ,

1. With probability 1− δ, the algorithm returns a estimate x̂ such that

d(x̂, x∗) ≤ 3ε.

2. The algorithm acquire O(log(1/δ)) independent outputs from the algorithm ALG.

3. The algorithm makes O(log2(1/δ)) calls to d.

4. The algorithm runs in time complexity O(log2(1/δ)).

Proof of Claim 24. The algorithm is described in Algorithm 3.
Let E be the event |{i ∈ [t] : d(xi, x

∗) ≤ ε}| ≥ 0.8t. Use standard Chernoff bound and the fact
t = 1000 log(1/δ), we have

P[E ] ≥ 1− δ.

Condition on E . We now show that xk (in the last line of the algorithm) satisfies d(xk, x
∗) ≤ 3ε.

21



ALGORITHMS FOR LEARNING A MIXTURE OF LINEAR CLASSIFIERS

Algorithm 3: SUCCESS-PROB-BOOSTER

Input:
δ – failure probability
Output:
x̂ – estimate of x∗

1 Set t = 1000 log(1/δ);
2 Acquire t independent outputs x1, . . . ,xt from the algorithm ALG;
3 Use BFPRT algorithm to select the (0.3t2)th smallest element τ among

{d(xi,xj) : 1 ≤ i < j ≤ t};
4 Construct undirected graph G = (V,E) where V = [t] and (i, j) ∈ E ⇐⇒ d(xi,xj) ≤ τ ;
5 Find k ∈ [t] such that the degree of vertex k is the highest in G;
6 return x̂ = xk;

First we claim τ ≤ 2ε. Since E holds, at least
(
0.8t
2

)
pairs of vertices are 2ε-close to each other.

Since
(
0.8t
2

)
≥ 0.3t2, we know that τ ≤ 2ε.

By the definition of τ , we know that |E| ≥ 0.3t2. Then the degree of the vertex k is at least 0.6t.
Since |{i ∈ [t] : d(xi, x

∗) ≤ ε}| ≥ 0.8t holds, there exist j ∈ [t] such that

1. (k, j) ∈ E.

2. d(xj , x
∗) ≤ ε.

Then d(xk, x
∗) ≤ d(xk,xj) + d(xj , x

∗) ≤ τ + ε ≤ 3ε. ■
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